Similarity transformation in one–dimensional reaction–diffusion systems; voting model as an example
نویسندگان
چکیده
The exact solution for a system with two–particle coagulation and decoagulation has been studied. The spectrum of the Hamiltonian of the system is found. It is shown that the steady state is two–fold degenerate. The average number density in each cite 〈ni(t)〉 and the equal time two–point functions 〈ni(t), nj(t)〉 are calculated. Any equal time correlation functions at large times, 〈ni(∞), nj(∞), · · ·〉, is also calculated. The relaxation behaviour of the system toward its final state is investigated and it is shown that generally it is exponential, as it is expected. For the special symmetric case, the relaxation behaviour of the system is a power law. For the asymmetric case, it is shown that the profile of deviation from the final values is an exponential function of the position.
منابع مشابه
Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملReaction-diffusion processes and their connection with integrable quantum spin chains
This is a pedagogical account on reaction-diffusion systems and their relationship with integrable quantum spin chains. Reaction-diffusion systems are paradigmatic examples of non-equilibrium systems. Their long-time behaviour is strongly influenced through fluctuation effects in low dimensions which renders the habitual mean-field cinetic equations inapplicable. Starting from the master equati...
متن کاملCellular Automata Simulation of a Bistable Reaction-Diffusion System: Microscopic and Macroscopic Approaches
The Cellular Automata method has been used to simulate the pattern formation of the Schlögl model as a bistable Reaction-Diffusion System. Both microscopic and macroscopic Cellular Automata approaches have been considered and two different methods for obtaining the probabilities in the microscopic approach have been mentioned. The results show the tendency of the system towards the more sta...
متن کاملA numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملPattern Formation of the FitzHugh-Nagumo Model: Cellular Automata Approach
FitzHugh-Nagumo (FHN) model is a famous Reaction-Diffusion System which first introduced for the conduction of electrical impulses along a nerve fiber. This model is also considered as an abstract model for pattern formation. Here, we have used the Cellular Automata method to simulate the pattern formation of the FHN model. It is shown that the pattern of this model is very similar to those...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008